You've described a rather complex organic molecule, likely a synthetic compound designed for specific research purposes. Let's break down its components and potential significance:
**Structure and Features:**
* **(2S)-2-[[(3,5-dimethoxyphenyl)-oxomethyl]amino]-3-methylbutanoic acid:** This part describes an amino acid derivative.
* **(2S)** indicates the stereochemistry at the second carbon, meaning it has a specific spatial arrangement of its substituents.
* **3-methylbutanoic acid** is a branched-chain fatty acid.
* **(3,5-dimethoxyphenyl)-oxomethyl]amino** refers to a substituted benzaldehyde group attached to the amino group.
* **[2-[(3-cyano-2-thiophenyl)amino]-2-oxoethyl] ester:** This part describes an ester group connected to the previous amino acid derivative.
* **3-cyano-2-thiophenyl)amino** refers to a substituted thiophene ring with a cyano group attached to the nitrogen.
* **2-oxoethyl] ester** indicates an ester linkage to an acetyl group.
**Potential Research Significance:**
Given the structure, this compound likely has properties relevant to:
* **Drug Development:** The combination of amino acid, benzaldehyde, thiophene, and cyano groups suggests the molecule could be designed to interact with specific biological targets, potentially acting as a:
* **Enzyme inhibitor:** The cyano group, thiophene ring, and benzaldehyde moiety could contribute to binding and inhibiting specific enzyme activities.
* **Ligand for a receptor:** The molecule might be engineered to bind to a specific receptor, potentially influencing a cellular signaling pathway.
* **Pro-drug:** The compound could be designed as a precursor that breaks down into a more active form inside the body.
* **Materials Science:** The molecule's structural complexity and the presence of aromatic rings could make it useful in developing:
* **New polymers:** The ester group could be incorporated into a larger polymer chain.
* **Organic semiconductors:** The thiophene ring and cyano group might contribute to electronic conductivity.
**To understand the specific research importance, you would need to:**
* **Know the context:** What is the research question or the intended application?
* **Look at the source:** Where did you encounter this compound? A scientific paper or patent would provide more detailed information.
* **Consult scientific databases:** You can search databases like PubChem or Reaxys to see if there are any existing studies or data on this compound.
By combining the structural features of the molecule with its context, you can gain a better understanding of why it is important for research.
ID Source | ID |
---|---|
PubMed CID | 2403831 |
CHEMBL ID | 1532509 |
CHEBI ID | 120413 |
Synonym |
---|
smr000343521 |
MLS000517453 |
MLS002249358 |
CHEBI:120413 |
[2-[(3-cyanothiophen-2-yl)amino]-2-oxoethyl] (2s)-2-[(3,5-dimethoxybenzoyl)amino]-3-methylbutanoate |
HMS2676J17 |
SR-01000049555-1 |
sr-01000049555 |
CHEMBL1532509 |
Q27208254 |
(2s)-2-[[(3,5-dimethoxyphenyl)-oxomethyl]amino]-3-methylbutanoic acid [2-[(3-cyano-2-thiophenyl)amino]-2-oxoethyl] ester |
Z56962132 |
[(3-cyanothiophen-2-yl)carbamoyl]methyl (2s)-2-[(3,5-dimethoxyphenyl)formamido]-3-methylbutanoate |
AKOS034826749 |
Class | Description |
---|---|
depsipeptide | A natural or synthetic compound having a sequence of amino and hydroxy carboxylic acid residues (usually alpha-amino and alpha-hydroxy acids), commonly but not necessarily regularly alternating. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASE | Homo sapiens (human) | Potency | 35.4813 | 0.0032 | 45.4673 | 12,589.2998 | AID2517 |
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 56.2341 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 28.1838 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 56.2341 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 19.9526 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
parathyroid hormone/parathyroid hormone-related peptide receptor precursor | Homo sapiens (human) | Potency | 50.1187 | 3.5481 | 19.5427 | 44.6684 | AID743266 |
DNA polymerase beta | Homo sapiens (human) | Potency | 3.9811 | 0.0224 | 21.0102 | 89.1251 | AID485314 |
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | Homo sapiens (human) | Potency | 15.8489 | 0.4256 | 12.0591 | 28.1838 | AID504891 |
DNA polymerase eta isoform 1 | Homo sapiens (human) | Potency | 50.1187 | 0.1000 | 28.9256 | 213.3130 | AID588591 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 19.9526 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
DNA polymerase kappa isoform 1 | Homo sapiens (human) | Potency | 79.4328 | 0.0316 | 22.3146 | 100.0000 | AID588579 |
Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) | Potency | 89.1251 | 6.3096 | 60.2008 | 112.2020 | AID720709 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 1.0000 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
guanyl-nucleotide exchange factor activity | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
protein binding | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
protein domain specific binding | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
cAMP binding | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
cortical actin cytoskeleton | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
microvillus | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
endomembrane system | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
membrane | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
lamellipodium | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
filopodium | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
extracellular exosome | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |